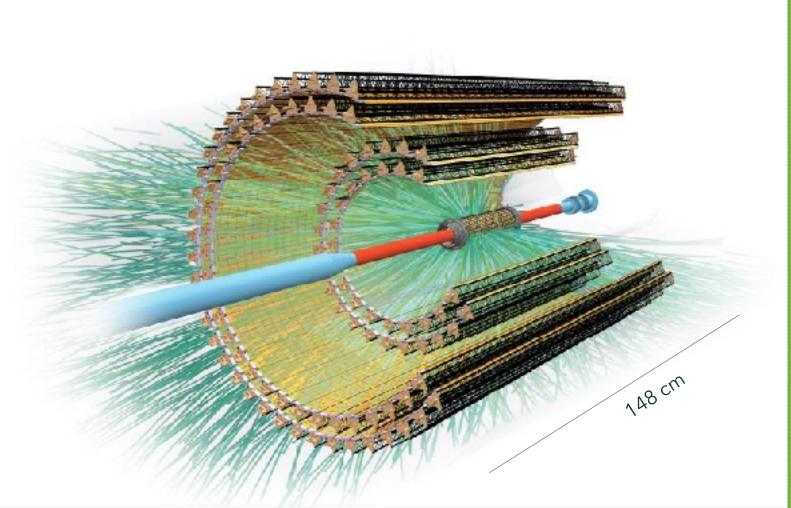


A Large Ion Collider Experiment



L'esperimento ALICE

La Collaborazione ALICE ha costruito un complesso rivelatore per sfruttare al meglio le potenzialità offerte dall'acceleratore LHC per studiare le collisioni di nuclei pesanti. Lo scopo è quello di indagare la dinamica delle interazioni forti alla massima energia mai raggiunta in laboratorio. In queste condizioni ci troviamo dinnanzi ad una fase estrema della materia nucleare denominata Quark-Gluon-Plasma. Si pensa che il nostro universo si sia trovato in questa fase nei primi milionesimi di secondo dopo il Big-Bang. Quindi, studiare le proprietà di questo stato, è fondamentale per comprendere i dettagli della Quanto-Cromo-Dinamica, il perché del confinamento dei quark, il meccanismo della rottura della simmetria chirale. Per fare questo si sta portando avanti un vasto programma di misure sulla produzione di adroni, elettroni, muoni e fotoni nelle collisioni degli ioni pesanti che vengono confrontate con le analoghe

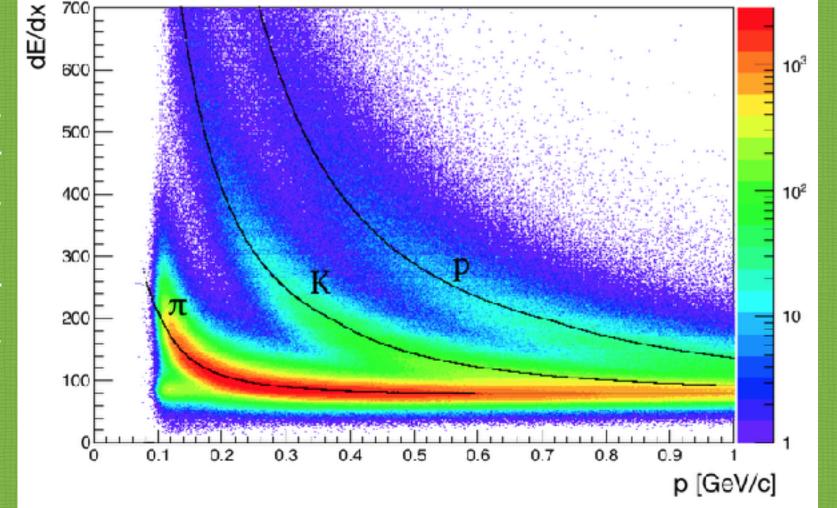
Costruzione del nuovo rivelatore di vertice ITS

Nel 2012 la collaborazione ALICE ha deciso di potenziare l'apparato sperimentale con un **nuovo rivelatore di vertice** basato su pixel di silicio ultra-sottili. Questo sostituirà l'attuale Inner Tracking System (ITS) durante il Long Shutdown previsto a partire dal prossimo anno. Un'intensa fase di R&S ha avuto luogo in questi anni per arrivare a definire un detector basato su materiali molto leggeri. La sfida tecnologica prevede di manipolare sensori spessi 100 µm testarli elettricamente, allinearli con

precisione micrometrica e incollarli su un supporto meccanico in fibra di carbonio. Queste operazioni devono essere necessariamente effettuate utilizzando una Macchina di Misura a Controllo Numerico posta all'interno di una camera pulita.

I LNF sono uno dei 4 siti di produzione degli elementi esterni e produrranno circa 108 dei moduli totali (staves).

Il lavoro di tesi consisterà nella partecipazione alle operazioni di assemblaggio test e qualificazione dei moduli, con possibilità di acquisire competenza di Data Acquisition, Data Analysis, elettronica avanzata. Si lavorerà in un ambiente internazionale con periodi di permanenza al CERN di Ginevra.


Contatti: federico.ronchetti@lnf.infn.it

Produzione di π, K, p in collisions a 8.16 TeV

Nel 2016 L'esperimento ALICE ha raccolto dati di **collisioni p-Pb** ad un energia nel centro di massa di 8.16 TeV. Questi dati, se confrontati con quelli acquisiti precedentemente relativi alle collisioni p-p o Pb-Pb, rappresentano un'opportunità unica per testare effetti dovuti al diverso stato iniziale. Infatti, per caratterizzare e studiare lo stato di Quark-Gluon-Plasma che si forma nelle collisioni fra ioni ultra-relativistici, parametri importanti sono le molteplicità delle specie di adroni prodotte. Studiando queste quantità è già stato possibile capire che il QGP si comporta come un fluido quasi ideale, ma per determinarne appieno tutte le caratteristiche serve un'analisi sistematica fatta a diverse energie. Quest'analisi si inserisce nel filone del gruppo di lavoro dei "Light Flavour" e rappresenta un contributo di grande valore scientifico.

La selezione delle tracce, l'identificazione del tipo di particella, la determinazione delle efficienze di ricostruzione e trigger richiedono studi accurati e iterativi. Il lavoro di tesi consisterà nel contribuire a

questo delicato processo con l'opportunità di lavorare in un ambiente altamente internazionale che richiederà anche periodi di permanenza al CERN di Ginevra. Contatti: valeria.muccifora@Inf.infn.it