EVERY An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS

BR($K \rightarrow \pi v v$) in the Standard Model

Extremely suppressed flavor-changing neutral current quark transition s - dvv forbidden at tree level, dominated by short-distance dynamics (GIM mechanism) and characterized by theoretical cleanness in the SM prediction of the BR.

Measurement of BRs of charged $(K^+ \rightarrow \pi^+ vv)$ and neutral $(K_L \rightarrow \pi^0 vv)$ modes can determine the unitarity triangle independently from B inputs.

and K_L

Stringent test of the SM and possible evidence for **New Physics**

Beyond the SM

New physics affects BRs differently for K^+ and K_L channels. Measurements of both could discriminate among NP scenarios

State of the art

Current theoretical prediction:

 $BR(K_L \to \pi^0 \nu \bar{\nu}) = (3.4 \pm 0.6) \times 10^{-11}$ $BR(K^{+} \to \pi^{+}\nu\bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$

Main contribution to the errors comes from the uncertainties on the SM input parameters

photon vetoes

Experimental status:

 $\begin{array}{l}BR(K_L \to \pi^0 \nu \bar{\nu})_{exp} & \text{never been}\\BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} & \text{measured}\\= (17.3^{+11.5}_{-10.5}) \times 10^{-11}\end{array}$

Gap between theoretical precision and experimental result status motivates a strong experimental effort.

Intrinsic theoretical uncertainties (1-3%) slightly larger for the charged channel because of the corrections from lighter-quark contributions

Only measurement was obtained by E787 and E949 experiments at BNL with stopped kaon decays (7 events in final sample)

Significant new constraints can be obtained.

Basic ingredients: precise timing and track reconstruction, redundant

KOTO at **J-PARC**

Proposal: in 3 yr SES 8 × 10^{-12} (3.5 SM evts). S/B = 1.4

Current status:

Reached 42 kW of slow-extracted beam power in 2015

- Preliminary results: 10% of 2015 data
- SES = 5.9×10^{-9}
- Expected background = 0.17 events
- Background estimate under study, signal box not yet unblinded

			Beam power will
	Run 62 - 2015		increase to 100 kW by
Expected	:02	3.5	2018
d 350 137.0 ℃	0.03+0.02	0.0	Continuing upgrades
00 250 L	0.0520.02	2	to reduce background:
200	0.17 ± 0.05	1.0 0.05+0.02	New barrel veto
150		1	(2016)
50	0.36+0.04	0.00±0.00	Both-end readout
1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 0			for CsI crystals

NA62 Experiment at the CERN SpS

GOAL: measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with 10% accuracy **O(100) SM events** + control of systematics at % level

Housed in the **CERN North Area** where a beam line provides 1.1×10^{12} protons/eff. second incident on a beryllium target with **P = 400 GeV/c**

selected. 4.5 MHz of kaon decays in 60-m fiducial region

Data taking foreseen till LHC LS2 (end 2018).

Expected to reach SM sensitivity by ~ 2021

KLEVER Project

 Baseline technology: Lead/scintillator tile with WLS readout. Based on design of CKM VVS. Assumed efficiency based on E949 and CKM VVS experience.

LKr

90-m distance from FV to LKr helps background rejection

 Reconstructed a γ s are mainly reconstructed downstream of FV

> 0.12:49 events

- Re-use NA62 hadronic calorimeters
- (MUV1/2, not shown).
- Ratio of hadronic/total energy effective to identify π showers. LKr shower profile: use cluster RMS to identify and reject π .

p > 0.12: 34 events

Ε(γγ) [GeV]

1.00

- - $\pi^0\pi^0$ escaping through beam hole. Must be insensitive as possible to
 - 3 GHz of beam neutrons. Baseline solution: Tungsten/
 - silicon-pad sampling calorimeter

with crystal metal absorber.

NA48 Liquid Krypton calorimeter.

Beam rates from FLUKA simulation

— After defining collimator ----- After final collimator 3 collimators with $\Delta \theta = 0.3 \text{ mrad}$ 30-mm Ir photon absorber in beamline

Charged Particle Rejection K_{e3} most dangerous mode: *e* easy to mistake for γ in LKr. Acceptance $\pi^0 v v / K_{e3} = 30 \rightarrow \text{Need } 10^{-9} \text{ suppression!}$

$K_L \rightarrow \pi^0 \pi^0$ rejection

Accept only events with 2 γ s in LKr and no hits in other detectors. Distinguish between even/odd pairs and events with fused clusters (5 yr equivalent statistics) Two photons with $z_{rec}(m_{\gamma\gamma} = m_{\pi 0})$ in fiducial volume (105 m < z < 155 m) (π⁰) [GeV] Even Ipstream lecavs *Ε*(γγ) [GeV] $r_{\min} > 35 \text{ cm on LKr and } p_{\perp}(\pi^0) > 0.12 \text{ GeV}$ (*π*⁰) [GeV] Fused Even Odd Channel

p_ > 0.12: 28 events

22 $\pi^0 \pi^0$ evts/year (about 50% with 1 γ with 100 < θ < 400 mrad, E < 50 MeV

Signal Acceptance

