

Directional Dark Matter Search

with high-precision gaseous Time Projection Chamber

Theses available in: simulation, data analysis and detector development for UNDER and CYGNUS-RD

Dark Matter is an established yet still mysterious paradigm

Gravitational lensing

Galaxy dusters

Cosmic microwave background

Rotation curve

Bullet dusters

Directional Dark Matter search can provide an unambiguous positive identification of signal even in presence of unknown amount of backgrounds

ifference from baseline configuration	N_{90}	N_{SS}
one	7	11
$C_{TH} = 0 \text{ keV}$	13	21
o recoil reconstruction uncertainty	5	9
$\tilde{c}_{TH} = 50 \text{ keV}$	5	7
$C_{TH} = 100 \text{ keV}$	3	5
N = 10	8	14
N = 1	17	27
N = 0.1	99	170
-d axial read-out	81	130
-d vector read-out in optimal plane, raw angles	18	26
-d axial read-out in optimal plane, raw angles	1100	1600
-d vector read-out in optimal plane, reduced angles	12	18
-d axial read-out in optimal plane, reduced angles	190	270

G

S

CENTRO FERMI

furico Jeruiz

% (95%) confidence level in 90% (95%) of th adout, 20 keV energy thr used angles are with the

The CYGNUS project

CYGNUS key concepts

- Galactic Directional Recoil Observatory at the ton scale for directional DM search and neutrino physics
- Gaseous TPC in multiple underground sites
- Negative ion drift in He for reduced diffusion and fiducialization
- Goal of zero background operation after electron/gamma rejection and **fiducialization**
- Directional and gamma/electron rejection thresholds at O(keV)

Timepix: 55 x 55 um² pixels with TOA, TOT or counting mode

Competitive with non-directional approaches in the low mass WIMP

region

90% C.L. upper limit no background 10 m³ x 3 yrs ⁴He:SF₆ 600:200

10 42

10 43 -

From CYGNUS-HD10 proposal, US **Cosmic Vision report** arXiv: 1707.04591

Hamamatsu Orca Flash 4 CMOS

CMOS camer

<u>CYGNUS-RD</u> funded by INFN CSN5

R&D for the development of a high resolution TPC for rare events search with **<u>GEMs</u>** amplification and **pixel** (charge or light) readout and innovative gas mixtures with negative ion drift

Both electrons and photon are produced in the amplification avalanche

3D reconstruction via TOA in each pixel

Electron Microscopy of a GEM Foil

High gain, high stability, high granularity

here a A N T A A C T I C

Light time profile

2D x-y projection

3D reconstruction combining the two

This project has been funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 657751 **<u>NITEC</u>**: Negative Ion Time Expansion Chamber

ropic target

Test of innovative negative ion drift gas mixtures based on SF₆ at nearly 1 bar

The team:

- E. Baracchini (GSSI)
- 🖉 G. Mazzitelli, S. Tomassini (INFN LNF)
- 🖉 G. Cavoto, E. Di Marco, D. Pinci, F. Renga, C. Voena (INFN Romal)
- 🖉 M. Marafini (Centro Fermi)

Find us on the web! https://web.infn.it/cygnus

~35 um track residual

Sigma 35 µm

~150 ph/primary electron

24 x 20 x 20 cm³

7 Liters

