Low Emittance Muon Accelerator

M. Antonelli, O. Blanco, M. Boscolo, S. Guiducci, L. Pellegrino, M. Rotondo, A. Stella

Argomenti tesi:

ottica e dinamica dei fasci, alte energie sperimentale, diagnostica dei fasci

Introduction

Conventional production:

from proton on target π , K decays from proton on target have typical P_{μ} ~100 ${\rm MeV/c}$ (π, K rest frame) whatever is the boost $P_{\rm T}$ will stay in Lab frame \rightarrow **very high emittance** at production point \rightarrow **cooling needed**!

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} around the **HERE** $\mu^{+}\mu^{-}$ threshold (Vs~0.212GeV) in asymmetric collisions (to collect μ^+ and μ^-)

Advantages:

- **1.** Low emittance possible: $P\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ P\mu$ can be very small close to the $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ threshold
- Low background: Luminosity at low emittance will allow low background and 2. low v radiation (easier experimental conditions, can go up in energy)
- Reduced losses from decay: muons can be produced with a relatively high 3. boost in asymmetric collisions
- 4. Energy spread: Muon Energy spread also small at threshold, it gets larger as Vs increases, one can use correlation with emission angle (eventually it can be reduced with short bunches)

Disadvantages:

Rate: much smaller cross section wrt protons

 $\sigma(e^+e \rightarrow \mu^+\mu^-) \sim 1 \ \mu b \ at \ most$

i.e. Luminosity(e+e-)= 10^{40} cm⁻² s⁻¹ \rightarrow gives μ rates 10^{10} Hz

Possible Schemes

With low energy e+ beam (in the GeV range):

1. Conventional asymmetric collisions (required L is beyond current knowledge) 2. Positron beam interacting with continuous beam from electron cooling (too low electron density need 10²⁰electrons/cm⁻³ to obtain an reasonable

conversion efficiency to muons) \rightarrow Electrons at rest is the only viable option

- 3. e+ on Plasma target (focusing from pinch effect, high density...more studies) 4.
 - e+ on standard target (crystals are a good option)
 - Need Positrons of ~45 GeV
 - Get v~200 and laboratory lifetime of about 500 us

Beam with e^+ and $\mu^+\mu$ e⁺ beam target

Ideally muons will copy the positron beam

Thesis on experimental HE physics

- features (momentum and energy spread)
- Use Bhabha events for normalization
- Measure muons momentum and emittance

• CONTACTS:

- Mario.antonelli@Inf.infn.it, Oscar.Blanco@Inf.infn.it,
- Manuela.boscolo@Inf.infn.it , Susanna.guiducci@Inf.infn.it,
- , Marcello.Rotondo@Inf.infn.it , Angelo.Stella@Inf.infn.it

celerator Concepts Workshop, San Jose (USA), July '14

MAP 2014 Spring workshop